US009471204B2

a2 United States Patent
Akolkar et al.

US 9,471,204 B2
Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54) SYSTEM AND METHOD FOR DATA-DRIVEN (56) References Cited
WEB PAGE NAVIGATION CONTROL
U.S. PATENT DOCUMENTS
(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION, SAOSATLA TS993 Blad o GOoN ~003
Armonk, NY (US) 5,774,123 A * 6/1998 Matson GO6F 17/30899
707/E17.119
(72) Inventors: Rahul P. Akolkar, Tuckahoe, NY (US); 5,835,683 A * 11/1998 Corella GO6N 5/022
John M. Boyer, Victoria (CA); Charles 706/11
F. Wiecha, Hastings on Hudson, NY (Continued)
(US)
(73) Assignee: INTERNATIONAL BUSINESS OTHER PUBLICATIONS
MACHINES CORPORATION, Agha, G., et al. “A Foundation for Actor Computation”; J. Func-
Armonk, NY (US) tional Programming 1 (1):1-000, Jan. 1993. (59 pages).
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.8.C. 154(b) by 447 days. Primary Examiner — Laurie Ries
(74) Attorney, Agent, or Firm — Tutunjian & Bitetto,
(21) Appl. No.: 14/042,969 P.C.; Mercedes L. Hobson
(22) Filed: Oct. 1, 2013
57 ABSTRACT
(65) Prior Publication Data A system and method for web application navigation control
US 2014/0033082 Al Jan. 30, 2014 includes updating navigation data models used in navigation
constraints with received data from an end-user or system.
Related U.S. Application Data Without needing a centralized application-specific control-
(63) Continuation of application No. 13/602,989, filed on ler, from a collection of extensi‘ple navigation rules assqci-
Sep. 4, 2012, now abandoned, which is a continuation ateq Wl,th each page of a pl}lrahty of pages, t.he extensible
of application No. 12/847,484, filed on Jul. 30, 2010, navigation rules are automatically selecte.:d which dep.end.on
now abandoned. changed data values and need re-evaluation. The navigation
constraints associated only with the pages potentially chang-
(51) Int.CL ing their ready state to execute from among the plurality of
GO6F 17/00 (2006.01) pages in an entire application are evaluated to determine
GOG6F 3/0484 (2013.01) which pages are ready to run based on updated data from the
GO6F 17/30 (2006.01) navigation data models. A preferred page to be actually
(52) US. CL navigated to next is selected from among a set of all
CPC ... GOGF 3/0484 (2013.01); GO6F 17/30873 available and ready pages by execution of a set of second
(2013.01) and. separate naVi.gation constraints. using results of the
(58) Field of Classification Search navigation constraints of the evaluating step.

CPC it GOG6F 17/30873
See application file for complete search history.

101\

Monolithic

18 Claims, 9 Drawing Sheets

118

S{w,qafv?|\/v3|w4|w| images [Fy [F2 [F5 [Fs [Attachmenits [DD

TR

AN

M,

W%EVKM%M\"‘ e |nnages| |F ||F7 ||F3 ||F4 | |Attachments||U ||D ||M | 4 /

Irma,vpell"\’ |

f\f.v||w4||ws||mw||r ||rz ||F ||“ ||Anachmem>||r> ||D |!‘Llﬁ§§§l—|mam |

Modular

N

104

|Wizard page| |Form pagel |dara instancel |XFOrms modeil |interaction control

US 9,471,204 B2
Page 2

(56)

5,835,905
5,841,978

5,848,424
5,854,630
5,877,765
5,877,766

5,943,670
6,041,357

6,069,630
6,212,575
6,300,948
6,996,800

7,028,306
7,029,306

7,203,910

7,483,915
7,774,388

2004/0153992

2005/0049993
2005/0102629

2006/0101052
2006/0161646

2006/0168558
2006/0168577
2006/0212376
2007/0220079
2007/0260620
2008/0046462
2008/0046557
2008/0126925
2008/0155613
2008/0162529
2008/0222179
2009/0100366

2009/0119334
2009/0265686

2010/0180213
2011/0022945
2011/0144898
2011/0156896

2012/0311451

References Cited

U.S. PATENT DOCUMENTS

* 11/1998 Pirolli GO6F 17/30663
* 11/1998 Rhoads GO6F 17/30876

* 12/1998 Scheinkman GO6F 17/30873

* 12/1998 Nielsen GOG6F 17/30882

* 0 3/1999 Batesccocveennn.

*8/1999
*3/2000

* 0 5/2000 Lisle .oovoiiiiennnns
B1* 4/2001 Cleronocceen.
Bl* 10/2001 Gellerccoovvvveennnn.

B2* 2/2006 Lucassen

A
A
A
A
A * 3/1999 Dickman ...
A
A GO6F 17/30705
A
A

2012/0331392 Al 12/2012 Akolkar et al.

2013/0197886 Al* 82013 Langemyr GO6F 17/12
703/2

2013/0331392 Al* 12/2013 Hurdcccooce C07C 279/22
514/237.8

OTHER PUBLICATIONS

Berry, G., et al. “The Esterel Synchronous Programming Language:
Design, Semantics, Implementation”, Science of Computer Pro-
gramming. vol. 19, No. 2, Nov. 1992. (51 pages).

Bonner, A. “Workflow, Transactions and Datalog”; Proceeding of
the 18th ACM Symposium on Principles of Database Systems
(PODS) May-Jun. 1999. (67 pages).

Boyer, J., et al. “Xforms 1,0 (Second Edition)” W3C Recommen-
dation, Mar. 2006. (126 pages) http:www.w3.org/TR/xforms/index-
all html.

Bray, T., et al. “Extensible Markup Language (XML) 1.0 (Fourth
Edition)” W3C Recommendation, Aug. 2006. (42 pages) http://
www.w3.0rg/TR/2006/REC-xml-20060816.

Caspi, P., et al. “Lustre: A Declarative Language for Programming
Synchronous Systems”, Conference Record of the Fourteenth
Annual ACM Symposium on Principles of Programming Lan-
guages. Jan. 1987. (11 pages).

Clark, I, et al. “XML Path Language (Xpath) Version 1.0” W3C

g%* 3%882 Eﬁlcoal:ﬁlr etal """"" Recommendation. Nov. 1999. (33 pages) http://www.w3.org/TR/
1999/REC-xpath-19991116.
Bl* 4/2007 Hugh ..occcooo... GO6F 17/30994 Cooper, E., et al. “Links: Web Programming Without Tiers”, Formal
Methods for Components and Objects, 5th International Sympo-
B2* 1/2009 Thompson sium, FMCO 2006. Nov. 2006. pp. 1-12.
Bl* 82010 Runchey GO6F 17/30861 Dong, G., et al. “Nonrecursive Incremental Evaluation of Datalog
704/9 Queries”, Annals of Mathematics and Artificial Intelligence, vol. 14,
Al* 82004 Molina-Moreno GOGF 8/35 Nos. 2-4, 1995. pp. 1-33.
AL* 32005 Nori GO6F 1; /137(; é gg Fielding, R. “A_rchitectgral Styles e_md thc_e Des_ign of Ngtwor_k-Based
‘AL* 3/2005 Chen ..~~~ GOSF 3/0481 Software Architectures”, PhD thesis, University of California, 2000.
715770 (180 pages). . . .
AL* 52006 Netrakanti ... GO6Q 10/00 Flapjax, “Flapjax Tutor.lal” Copyright 2906. Printed May 2007. (10
Al* 7/2006 Chene GOGF 17/243 Pages) http://’www.flapjax-lang. org/tutorial/.
709/223 Halbwachs, N., et al. “A Tutorial of Lustre”, This Document is an
Al* 7/2006 de Seabra e Melo GO6F 8/71 introduction to the language LUSTRE-V4; Jan. 2002. pp. 1-26.
717/105 www-verimag.imag.fr/~halbwach/PS/tutorial.ps.
AL* 7/2006 Melo ...ccoovveeveieinnnn GOGF 8/71 Harel, D., et al. “Statemate: A Working Environment for the
717/168 Development of Complex Reactive Systems”; Proceedings, 10th
AL* 9/2006 Snyder ... International Conference on Software Engineering. Apr. 1988. pp.
396-406.
Al* 9/2007 Chandrasekharan . Harris, T., et al. “Composable Memory Transactions: Post-Publica-
AL* 112007 GO6F 17/30348 tion Version” PPoPP ’05. Aug. 2006. pp. 1-.13. .
AL* 2/2008 GOGF 17/30392 Houssais, B. “The Synchronous Programming Language Signal a
Al* 2/2008 HO4M 1/72525 Tutorial”, Irisa. Espresso Project. Apr. 2002. (48 pages).
Kiczales, G., et al. “Aspect-Oriented Programming” ACM Com-
Al* 5/2008 Haven puting Surveys. vol. 28 , Issue 4. Dec. 1996. (14 pages).
Liu, M. “Extending Datalog With Declarative Updates”, Journal of
Al* 6/2008 Intelligent Information Systems. vol. 20, No. 2, Mar. 2003. (23

Al* 7/2008 Stuhec ...

Al 9/2008 Greene et al.
Al* 4/2009 Fitzmaurice

Al* 5/2009 Aherncccon...
Al* 10/2009 Lucasc.......

Al* 7/2010 Karageorgos GOG6F 17/30011

Al* 1/2011 Yang GOG6F 17/30899

Al* 6/2011 Konig ..o

Al* 6/2011 Hoffberg

Al* 12/2012 Beaven

pages).

Manola, F., et al. “RDF Primer” W3C Recommendation. Feb. 2004.
(78 pages) http://www.w3.0rg/TR/2004/REC-rdf-primer-
20040210/.

Milner, R, et al. “A Calculus of Mobile Processes, Part 17, Infor-
mation and Computation 100. Jun. 1989, (46 pages).

Milner, R., et al. “A Calculus of Mobile Processes, Part II”,
Information and Computation 100, Jun. 1989. (41 pages).

Paton, N., et al. “Active Database Systems”, ACM Computing
Surveys (CSUR). vol. 31, Issue 1. Mar. 1999. (47 pages).

Topor, R. “Safe Database Queries With Arithmetic Relations”
Proceedings of thel4th Australian Computer Science Conference.
Feb. 1991. pp. 1-12.

Wang, X. “Negation in Logic and Deductive Databases”, PhD
Thesis, University of Leeds. Sep. 1999. (180 pages).

* cited by examiner

US 9,471,204 B2

Sheet 1 of 9

Oct. 18, 2016

U.S. Patent

L5l

] [eped wioy|[My] [ebed pream{[a|

[l

N _ IBNP O _

N :
_ Nmm&muﬁ_%ﬁ_wﬁ_ﬁﬁ SIUBWILDRILY LyllsaBews EE_IL_L@_%TQA&E:Q_
\:\ //////

% Salltwill “all fal srewiyseity _mmmmEm__u%,__wg__mg__ >>__ .%,_ Y
_ 4

001
gli \gol 211

Eatnfain] sswewene] Pl e <]t [sebeuwn [SplrmlEmlembm

/ MLYU{OUOW
LGl

U.S. Patent

Oct. 18, 2016

Sheet 2 of 9

WD

_—

Logo.png

o
)
Pagel.htmi

Page2.htmi

XForms Model

<instance sr¢ />

<instance sr¢ />

XForms Model

<instance sre />

e

Dixmd

<data>

A i

</data>

D2.xmi
<moredata>

ML
Signature

</moredata>

4 /

138

FIG. 2

US 9,471,204 B2

\134

202

U.S. Patent Oct. 18, 2016 Sheet 3 of 9 US 9,471,204 B2

g
171 WD Server-side WD Processor

| » WD-INF/next-resource.xm]

/ <navigate» 174
[<target>?age2.htmE<:/target>-O\\C’—*/

/ </ravigate> >

174 Pagel.htmi Page?.html 1+
KForms Model KForms Model
<instance GET Dixmi/> <instance GET D2.xmi/> d 175

<instance GET D2.xmi/>

. <submission PUT
<submission PUT

; IWD-INF/next-resource />
m I 7 s . ¥ - .
EWEJ—EE‘{F'/next—resciurvce(;» <subrnission PUT D2.xml 7>
173 | <submission PUT Dloaml /> <submission GET
T <submission PUT D2xml /> WE-INE/next e />
. e S - 2KI-Teso By
~H <submission GET fREXTTESOUTEE -
o IWED-INF/next-resource /> . ,
173 <imng src />
\ e D1.xm D2.xmi
<data> <moredata>
T ——

7 d? KL
</data> .
2:}‘(} ata Signature
| | Logepng J_____,, </moredata> 4

304

FIG.3

U.S. Patent Oct. 18, 2016 Sheet 4 of 9 US 9,471,204 B2

237 234 238
f_J f—/
<<PREVIOUS<< »2NEXT>> >>DONE<<
{page, Page1.htmi} ipage, Page3.htmi} {document, hitp//theApp}|
PUT PUT
IWD-INF/mext-resource IWB-INF/next-resource

xforms-submit-done
|

PUT D1.xm N
Data T~ 238

xforms-submit-done

xforms-submit

Synchronization v
Submissions BUT D2 el I/—\ 938

if page

if document

xforms-submit-done

GEY BOST
IWD-INF/next-resource IWD-id to http://theApp
240 242

FIG.4

U.S. Patent Oct. 18, 2016 Sheet 5 of 9 US 9,471,204 B2

D RESTful Interaction Controller
{example: State Chart XML} 302
| IWD-INF/next-
resource.xmi
<navigatex> 258
<target>nexi</target>
</navigate> — 254
251
p " Pagelhuni Page2.himi
AForms Z’qf‘d& " XForms Model
<instance GEi Dl.xmi/> <instance GET D2xmi/> 4
<instance GET D2aaml /> ™
ccubmission PUT <submission PUT
2%‘& _ < S50
- 3-NF/nextresource / IWD-INF/next-resource />
WO-INF/next-resource /> N/ ‘-
L submission BUT Dixml /> <submission PUT D2oami />
Tcsubmission PUT D2.xml /> <submission GE‘_T_IC />
N<submission GET ic />
252 Dixml Dz,xm.! Y e
<data> <moredata> -
T XML
-~ </data> Signature
Logo.png (</moredata>
» /
253 \ \

A)

304

FIG.5

U.S. Patent Oct. 18, 2016 Sheet 6 of 9 US 9,471,204 B2

262
260
233 / 234 236
r_/ e’
<<PRE.\/E()US<% >>NEXT>/ >»>DONE<<
{page, previous} {page, next} {document, http://thefppi
PUT PUT
IWD-INF/nexi-resource IWD-INF/next-resource
xforms-submit-done orms-submit
4
PUT D1.ximi _
Data /_. 238
Synchronization ; "xfarms—saubr‘mt—done
Submissions BUT D2.anl 233

if page if document

*forms-submit-done

GET POST
ic WD-id to hitp//theApp
240 242

FIG.6

U.S. Patent Oct. 18, 2016 Sheet 7 of 9 US 9,471,204 B2

Relate data fieids /
types with constraints

502

Customize the application
Check information to

determine if condition is met Add bind statements

208 520
Check for deletions
and backtrack
206 Provide level of
abstraction / interface
Check for stored 522

information

508
Author control
Skip steps if information independently of
is already known platform
509 524
* Move application
If condition{s} are hetween platforms
met, avoke trigger independently of
£10 page structure

Trigger starts process to control

navigation In accordance with
populated data fields and content
512

Return to earlier page
based on a change in data
514

!

Resume execution of earlier

page without reprompting

FIG.7

U.S. Patent Oct. 18, 2016 Sheet 8 of 9

US 9,471,204 B2

Update
navigation data Y
maodels with Select and navigate a
data preferred page
540 548
Perform / customize
Y . .) Resume
tie-breaking Return to .
Select o execution
550 earlier ¢ oarli
- : of earlier
extensible oages f
avication ages for
navigation based pi g)
fas wit P change
ruies without Control navigation on data i tg
. . y e . s ¥ {datia
cun_tmilar hased on presence / chariges o
542 absence of data values 560 vailies
552 262
\ 4 F 3 A
Evaluate pages
o determine
those that are
ready 1o :
execute .
Add dependency
546 .
— constrainis
{e.g., bind statemeants)

without extension poinis
564

FIG.8

U.S. Patent

Oct. 18, 2016

Sheet 9 of 9 US 9,471,204 B2

Server
602

Memory - 603

Application

module
612

Interaction

Processor
614

A

A

A A

\ Y

Dependency
graph

Y

Network
604

iser device

A

A

User device

610

Forms with
data fields

615

FIG.9

\

610

User device
610

US 9,471,204 B2

1
SYSTEM AND METHOD FOR DATA-DRIVEN
WEB PAGE NAVIGATION CONTROL

RELATED APPLICATION INFORMATION

This application is a Continuation application of allowed
U.S. patent application Ser. No. 13/602,989, filed on Sep. 4,
2012, which is a Continuation of allowed U.S. patent
application Ser. No. 12/847,484, filed on Jul. 30, 2010, all
incorporated herein by reference in their entirety.

BACKGROUND

1. Technical Field

The present invention relates to web page navigation
control and more particularly to a system and method for
automatically providing navigation through pages based on
a position and/or content of data known or entered into a
web form or page.

2. Description of the Related Art

Complexities result from a lack of integrated document
packaging for current document formats which represent
composite forms in collaborative business processes. Under-
lying document formats that flow through business pro-
cesses typically are existing formats such as PDF, DOC,
HTML, or various proprietary XML formats. Proprietary, or
vendor-centric, formats are not suitable representations for
complex composite forms due to the closed nature of their
formats. Complex forms require new or extended represen-
tations for issues such as data sharing across document
fragments, transfer of control among fragments, electronic
signatures that span document fragments, and style sheets
for coherent presentation and interaction.

When large form applications are based on an XML file
format, they are somewhat open and interoperable. Use of a
custom XML vocabulary, when implemented in plug-in or
other runtimes separate from web browsers, often limits
access to the full power of well-known web resources that
customers expect to be able to use, such as CSS™ and
JavaScript™.

Web formats today, such as HTML, do not support
packaging of composite resources directly—the page is the
unit of content storage. Hyperlinks permit navigation among
related resources but do not define collections of related
content. Formats that collect related artifacts including
HTML pages, images, and metadata into internally coherent
entities are intended for archiving websites for historical or
offline purposes, not as runtime platforms.

Most solutions to the packaging of composite web appli-
cations therefore are specific to the middleware platform on
which the web application is deployed. Web application
archive format (WAR) files are used by JEE web application
servers to package and deploy the set of artifacts needed by
a given web application including HTML pages or the Java
Server Pages that create them, Java beans for storing and
validating data during user interaction, and static resources
such as images.

JEE web applications commonly include flow-based con-
trollers such as Struts to control the internal behavior of the
various artifacts included in the WAR file and to invoke
back-end services as required. Generally, web archive
(WAR) files define a packaging mechanism for composite
web applications, but they do so in a platform-specific (JEE)
way. Such archives are not transportable to other runtimes
including non-JEE application servers or client-based run-
times.

10

15

20

25

30

35

40

45

50

55

60

65

2

Going beyond packaging formats, web archive files are
deployment not runtime artifacts and hence do not define a
network access protocol, or URL pattern, for accessing their
contents. Web archives similarly provide no support for
aggregating multiple content sources when several end-
users are involved in a document-centric business process.

The emerging W3C format for widgets makes similar use
of zip-based archives for packaging but, as in the JEE WAR
example above, lacks requirements or support for an inter-
active protocol or instance-specific data storage. URI stan-
dards being defined for widgets are intended to resolve
references internal to the widget from one resource to
another. Prior work on composite document packaging
focuses on adapting document content for rendering to
multiple devices.

In traditional workflow, the token of control is the central
focus and content (whether in documents or otherwise)
flows through the process from one artifact to another as a
result of the execution of a control path defined by the
workflow. Documents and document behavior become sec-
ondary to control flow.

High level declarative languages for control are required
just as they are for data and presentation. Many of today’s
complex forms processing systems require authors to
“escape out” of their document-centric languages when
describing behavior, even to manage document presentation
and validation in single workflow steps with individual
users. Document-centric formats that do not extend to
behavioral control increase complexity due to the need to
map repeatedly between declarative and procedural pro-
gramming models.

Declarative languages for document behavior may none-
theless be expressed in multiple conceptual models, includ-
ing flow-based languages with adaptations for human inter-
action, state-based languages, and time-based languages.
These declarative languages share the advantage of being
independent of the specific runtime middleware platform
being used to support the composite web application.

Without a simple means to represent large or complex
forms as composite documents, monolithic documents result
in performance and scalability limitations, particularly on a
logical client. Large documents are slow to transmit, parse,
and display and consume large amounts of storage. When
large forms applications are represented with a single XML
document, the result is excessive, and sustained demand on
memory resources is needed to provide a performant user
experience. This is demanding on a rich client program, but
it is even more demanding when the logical client includes
a server program to present the parts of the document to an
end-user through a web browser. The server side of the
solution has the same performance challenges as a rich client
for one user, but also does not scale up beyond a few dozen
concurrent users per CPU.

The processing associated with a complex document may
take place at multiple locations in a distributed system.
End-users may interact with rich or thin clients. Web ser-
vices may augment document content from the server.
Intermediaries may transform document content in the net-
work. The decision as to where to perform each document
operation should be decoupled from how the document is
represented to allow for “late binding” or alternative choices
in how document processing is deployed onto a particular
infrastructure. Lightweight means to provide language
extensions to current browsers have been developed based
on the use of JavaScript™ as an XML tag library imple-
mentation language rather than as the direct authoring
language for web pages.

US 9,471,204 B2

3
SUMMARY

A system and method for web application navigation
control includes relating data entry fields in a page stored in
computer readable storage memory with non-procedural
computed dependency constraints that provide navigation
control when a condition is met. A presence of user-side
information is checked to determine if the condition is met
and the indicated navigation control is to be invoked. If the
condition is met, a trigger event is evoked to navigate to a
new page based on at least one of a set of entry fields where
data was entered in and a type of data content entered in the
entry fields without guidance from procedural navigation
code.

A system for web application navigation control includes
a server including a dependency graph relating data entry
fields in a page with a navigation instruction that provides
navigation control when a condition is met. An interaction
module is configured to be sensitive to at least one of
user-side information entry and known information to deter-
mine if the navigation instruction is to be invoked. A
processor is configured to execute the navigation instruction
in accordance with a presence or absence of data values or
conditions over those values to navigate to a new page based
on at least one of a set of entry fields data was entered in and
a type of data content entered in the entry fields without
guidance from procedural navigation code.

A system and method for web application navigation
control includes updating navigation data models used in
navigation constraints with received data from an end-user
or system. Without needing a centralized application-spe-
cific controller, from a collection of extensible navigation
rules associated with each page of a plurality of pages, the
extensible navigation rules are automatically selected which
depend on changed data values and need re-evaluation. The
navigation constraints associated only with the pages poten-
tially changing their ready state to execute from among the
plurality of pages in an entire application are evaluated to
determine which pages are ready to run based on updated
data from the navigation data models. A preferred page to be
actually navigated to next is selected from among a set of all
available and ready pages by execution of a set of second
and separate navigation constraints using results of the
navigation constraints of the evaluating step.

These and other features and advantages will become
apparent from the following detailed description of illustra-
tive embodiments thereof, which is to be read in connection
with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

The disclosure will provide details in the following
description of preferred embodiments with reference to the
following figures wherein:

FIG. 1 is a diagram showing a monolithic document
decomposed and aggregated into an interactive web docu-
ment (IWD) in accordance with the present principles;

FIG. 2 is a diagram showing resources using svc attributes
with relative URIs to access other resources in a same IWD;

FIG. 3 is a diagram showing an illustrative page naviga-
tion submission sequence;

FIG. 4 is a diagram showing submission patterns for IWD
interaction control;

FIG. 5 is a diagram showing an interaction controller
submission sequence for interaction control based page
navigation;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 6 is a diagram showing submission patterns for IWD
interaction control using logical navigation targets;

FIG. 7 is a block/flow diagram showing a system/method
for web page navigation control in accordance with one
illustrative embodiment;

FIG. 8 is a block/flow diagram showing a system/method
for web page navigation control in accordance with another
illustrative embodiment; and

FIG. 9 is a block diagram showing a system for web page
navigation control in accordance with another illustrative
embodiment.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

In accordance with the present principles, systems and
methods for unifying storage and management of various
artifacts for web applications and the like into an Interactive
Web Document (IWD) are illustratively provided. Docu-
ments allow end-users to encapsulate information related to
a collaborative business process into a package that can be
saved, emailed, digitally signed, and used as the basis for
interaction in an activity or an ad hoc workflow. While
documents are used incidentally today in web applications,
for example, in HTML presentations of content stored
otherwise in back-end systems, they are not yet the central
artifact for developers of dynamic, data intensive web appli-
cations.

The storage and management unification of the various
artifacts of web applications into an Interactive Web Docu-
ment (IWD) provides that data, presentation, behavior,
attachments, and digital signatures collected throughout the
business process are unified into a single composite web
resource. A standards-based approach to packaging multiple
resources into IWD archives based on the Open Document
Format, a REST-based protocol for interacting with IWDs,
and an extensible interaction controller architecture are
illustratively described.

In accordance with the present principles, web application
navigation control is provided by updating navigation data
models used in navigation constraints with received data
from an end-user or system. Without needing a centralized
application-specific controller, from a collection of exten-
sible navigation rules associated with each page of a plu-
rality of pages, the extensible navigation rules are automati-
cally selected which depend on changed data values and
need re-evaluation. The navigation constraints associated
only with the pages potentially changing their ready state to
execute from among the plurality of pages in an entire
application are evaluated to determine which pages are
ready to run based on updated data from the navigation data
models. A preferred page to be actually navigated to next is
selected from among a set of all available and ready pages
by execution of a set of second and separate navigation
constraints using results of the navigation constraints.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

US 9,471,204 B2

5

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data

10

15

20

25

30

35

40

45

50

55

60

65

6

processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block dia-
gram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

A new composite document format called Interactive Web
Documents (IWDs), based on reuse of existing standards
such as the Open Document Format (ODF) packaging
format is described. The format collects together all artifacts
of a complex form moving through a business process. In
addition, a REST-based protocol is defined for interacting
with IWDs at runtime. A standard format for office-based
documents (ODF) provides an archive format for packaging
the various artifacts relevant to an office document, includ-
ing content, style sheets, and images, along with a manifest
itemizing those assets.

IWDs extend ODF packages in two ways: first, they reuse
the ODF package format for interactive documents by
defining a mapping between REST-based requests over the
web into the internal artifacts stored in the archive. This
mapping allows IWDs to maintain their identity as inte-
grated resources. The second extension IWDs make to ODF
archives is to allow for additional artifacts relevant to
interactive forms, including (X)HTML pages, additional
style sheets, documents defining data models (e.g. using
XForms models) and declarative controllers managing tran-
sitions among these artifacts as the document executes.
IWDs thus are containers for a set of smaller subdocuments,
each of which can be served and rendered more quickly than
the complete monolithic document while providing control

US 9,471,204 B2

7

over the navigation among the included documents and
aggregation of data results from each.

The IWD architecture defines not only how IWD artifacts
are stored internally in their ODF-based archive, but also
how they interact with the external environment using a
REST-based protocol. IWD runtimes support a set of URL
patterns for REST-based interaction including GET, PUT,
POST, and DELETE operations on documents inside the
IWD resource. IWDs thus are well-behaved web resources
and can be served by any web platform (client or server) able
to support its REST protocol. Client-based access may be
made directly to IWDs hosted by rich clients or remotely to
IWDs served to a web browser or other thin client. Server-
based middleware used to implement the backbone business
bus over which IWDs execute in a business process likewise
can manage IWDs using the same interface—treating the
Interactive Web Document as a service.

The document-centric approach to forms applications is
popular with both end-users and application developers. A
new file format and processing model for describing rich
interactive forms applications that preserves their document-
centric nature while also better accommodating their
memory and performance demands is presented in this
disclosure. The file format itself is based on the ODF
standard and (X)HTML web pages, while the rich, secure
processing model is based on XForms and XML Signatures.

Referring now to the drawings in which like numerals
represent the same or similar elements and initially to FIG.
1, a monolitihic document 101, its decomposition and aggre-
gation into an Interactive Web Document (IWD) are illus-
tratively depicted. Resources comprising a web application
are stored within a single compressed archive file 100 that
conforms to the ODF package format. As such the archive
file 100 also includes an internal indication 102 of'its content
type and a manifest 104 of its resources, and their content
types. FIG. 1 depicts the simple transition from a single,
monolithic XML document 101 to the new Interactive Web
Document (IWD) format 100.

A monolithic form document 101 stores in a single XML
document all images 108, all supporting document attach-
ments 110 provided by end-users, all XML data instances
112 and business rule models 114, all scripts and style-sheets
116, all web pages 118 needed for various wizard experi-
ences, and all pages or other files which may be needed for
high-precision “contractual” views and “print” views of the
business function. In the Interactive Web Document 100,
these resources are aggregated, yet their decomposition
remains within the ODF package. Aggregating the resources
enables the document-centric business process, and preserv-
ing the decomposition enables better design tooling, and it
also enables the components to be addressable as separate
resources via a REST service interface.

An application developer has the option of placing the
data models (M,,) 114 into the web pages 118 rather than
separating them out, thus allowing optimizing and tailoring
the client-side business rules to control just what is on each
page. The XML data instances (D,,) 112 are in separate files,
and the many web pages (Wr,, and F,,) 118 and 116 that may
be needed to complete the business function are in separate
files, each capable of sharing access to the XML data files in
the package by simply referencing them with the src attri-
bute of an <xforms:instance> (see below). Each of the web
pages 118 (116) can permit the user to transition to any other
web page in the document using an <xforms:submission>
(see below), which also permits the next page to be deter-
mined dynamically from user input.

10

15

20

25

30

35

40

45

50

55

60

65

8

In lieu of directly expressing page transition instructions
within the web pages 118, application developers may
formalize the state transitions of the Interactive Web Docu-
ment into a centralized interaction controller (IC) based, for
example, on State Chart XML as described herein.

IWD Metadata: According to the ODF packaging format,
the file which may be regarded as the root of processing is
called content.xml. Other current ODF formats are used to
contain the results of a rather passive and relatively free
form user interface experience (e.g., text editing), and the
contents of the content.xml file are appropriate to that task.
In the case of an Interactive Web Document, the ODF
package is intended to aggregate the web application
resources needed to perform a business function, and con-
tent.xml contains information relevant to that purpose. This
can include: 1) an indication of the current web page on
which to begin processing when the Interactive Web Docu-
ment is launched; this setting initially indicates starting web
page, but it can be adjusted whenever the user navigates to
a new web page in the IWD; 2) the base URI of the server
from which the document was first obtained; this setting is
only automatically set if it is empty and the document was
obtained from the web; 3) a document-level definition for
the resources (e.g. PDF/A documents or web pages) that
comprise the print view of the document; 4) an IWD
template identifier to help easily determine the IWD tem-
plate from which this IWD was instantiated; this setting
helps optimize instantiation by enabling the ability to only
instantiate IWD components that differ from the template; 5)
a globally unique identifier (GUID) for the IWD to help
track the IWD through a multi-user collaborative process; 6)
an indicator of a centralized interaction controller file that
helps manage the state of the IWD; 7) other IWD metadata,
such as information about an IWD-internal cache of content
from externally referenced URIs.

Although it is also feasible to store the shared data of an
IWD in content.xml, the variation illustratively discussed
herein uses separate data files as this simplifies both IWD
authoring and the REST interface for the IWD. The metadata
element indicates the current web page on which processing
begins. As a result, the following markup provides an
example of the content.xml file of an IWD:

<odf:document-content D
xmlins:odf=“&odfns;”>
<odf:office-body>
<iwd xmlns="“&iwdns;”>
<current>Pagel.html</cur
rent>
</iwd>
</odf:office-body>
</odf:document-content>

Package-Relative Referencing: Many web-based tech-
nologies use URIs to enable a document to obtain or
reference related web resources. A simple example is the src
attribute on and <script> tags in (X)HTML web
pages. The web technologies used within an IWD are further
equipped with a relative URI dereferencing facility that
enables access to resources within the IWD that are posi-
tioned relative to the referencing resource.

Referring to FIG. 2, a diagram of a simple IWD 130
comprised of two web pages (Pagel.html and Page2 html)
132 and 134, two data files (D1.xml and D2.xml) 136 and
138 and an image (Logo.png) 140. If Pagel .html is stored in
the root directory of an archive, and a file Logo.jpg is stored

US 9,471,204 B2

9

in an images subdirectory, then a web page can display the
logo image using the following markup:

 W,

Similarly, FIG. 2 shows that web pages can use an
XForms element called <xf:instance>, where xf is bound to
the XForms namespace, to access an XML data model, and
that element also supports an src attribute. As a result, the
following markup can be used to import the data file D1.xml
from a data subdirectory into a web page in the root
directory of the archive:

<xfiinstance id="d1” sre="data/D1.xml”/>

Run-Time Behaviors of an IWD: Session Instantiation:
There are a number of ways in which a user can begin
interacting with an IWD. The user could click an anchor link
to the IWD template or the user could make a request of a
server endpoint that returns an IWD template or perhaps an
IWD that has been partially completed in a prior session. In
all these cases, the IWD content type on the outbound result
is detected, and the content is rerouted to the IWD server via
a POST operation. Rather than delivering the entire binary
ODF package for the IWD, this operation creates an inter-
action session for the IWD and then returns a redirection
page to the end-user that requests the <current> web page
from the session-qualified IWD.

The act of instantiating an IWD interaction session con-
sists of logically exploding its file resources into a unique
directory determined dynamically at the time of the request.
All further interactions on the IWD by the end-user are
channeled through a session ID associated with that direc-
tory by the IWD server implementation. This permits any
number of users to instantiate any number of IWDs since
each instantiation results in a unique session directory. Note
that if the IWD provides a template identifier, then rather
than physically storing a copy of all files in the IWD, it is
possible to detect which files differ from the template and to
store only those. Requests for unmodified files are answered
with content from the template. Once the IWD interaction
session is created, access to IWD resources is channeled
through the session-qualified URIs of a REST API that
provides the standard CRUD operations (create, read,
update, delete).

Data Sharing across Web Pages: Web pages are able to use
XForms user interface bindings to enable the end-user to
access and, depending on the form control, modify data
stored in an XForms instance. In a single web page appli-
cation, the XForms instance can contain the data as inline
content. However, to share data across web pages, the data
is stored in a data file in the IWD. For example let the file
D1.xml in a data directory of the IWD contain the following
content:

<policy xmlns=*"> D
<name>Kazimierz

Kuratowski</name>

</policy>

The data is then imported into a particular web page using
the src attribute of the <xf:instance>, which makes the data

10

content available via XPath referencing regardless of
whether it was obtained from inline content or an external
resource as follows:

<xfiinstance id="d1”
sre=“data/D1.xml”/>

<xfiinput
ref="“/policy/name”>
<xfilabel>Insured
Name:</xf:label>
</xfinput>

10

In this case, the web page contains both the model and
user interface controls. When it is loaded in the web browser,
resolving the src attribute does a GET request to the session-
qualified IWD REST service for the resources named by

2 package relative URIs.

Data Synchronization via Submissions: The end-user may
wish to navigate to a new page or to submit a completed
IWD to the back-end server application for processing.
Since a current page will be discarded, any instance data
modifications made by the end-user have to be saved to the
IWD via PUT requests to the session-qualified IWD inter-
action REST service. These requests are made by <xf:
submission> elements having the markup patterns described
below.

Although most web pages in the IWD will tend to
manipulate only one or two shared instances, the pattern for
two instances easily extends to an arbitrary number. Thus,
assume we have two instances, a first D1.xml and a last
D2.xml:

25

35

<xfinstance id="d1”
sre="data/D1.xml”/>
<xfinstance id=*d2”

40 sre="data/D2.xml”/>

Given these instances, the following markup pattern
shows two submissions that put them to the IWD. In these
submissions, the resource attribute indicates the package-
relative URI to write (e.g. data/D1.xml or data/D2.xml), and
the ref attribute indicates the instance whose content is
written. The replace attribute indicates that nothing is
replaced by the put operation, so processing of the current
50 web page continues. The relevant and validate attributes

indicate that the data synchronization submissions do not

perform data validation or pruning of non-relevant nodes
since these submissions are intermediate steps in an aggre-
gate data collection operation.

45

55

<xf:submission id=*“Submit_datal”
method="put” ref=“instance(‘d1')”
resource="data/D1.xml” replace="none”
relevant="false” validate="false”>
<xfisend ev:event="xforms-submit-done”
submission="“Submit_data2” />
<xfimessage
ev:event="xforms-submit-error’>
Server down, please try again.
</xfimessage>
</xfisubmission™>

60

65

US 9,471,204 B2

11

<xf:submission id=“Submit_data2”
method="“put” ref=“instance(‘d2')”
resource="data/D2.xml” replace="none’
relevant="false” validate="false”>

5

<xf:message
ev:event="xforms-submit-error”>
Server down, please try again.
</xfimessage>
</xfisubmission™>

10

The lifecycle of an XForms submission includes a final
event, either xforms-submit-done on success (further above)
or xforms-submit-error on failure (just above). For the error
case, this markup pattern shows a simple way to report
failure. In the success case, all data synchronization sub-
missions except the last have a handler that initiates syn-
chronization of the next data instance in the sequence. The
xforms-submit-done event handling for the last data sub-
mission will be described below.

Web Page Navigation: Navigation to a new page within
the IWD involves the use of a prime mover submission, the
data synchronization submissions, and a page navigation
submission. Referring to FIG. 3, a schematic of the sequence
of submission operations (<submission PUT_>) for a page
navigation is illustratively shown. First, the server-side IWD
processor is informed (arrow 171) of a next resource,
Page2 html. A second and third data synchronization sub-
missions (172 and 173) put the data collected by Pagel.html
into a server-side IWD instance(s) 304. An IWD could have
fewer or more of these submissions, depending on how
many data instances need to be synchronized. A fourth
submission (174) requests a next resource (174'), and a fifth
submission (175) shows Page2.html consuming one of the
results of the data synchronization.

The sequence can be initiated by an <xftrigger>, which
is a generic form control that may be represented by a user
interface element such as a button. On activation of the
trigger, the <xf:send> action is executed, which initiates the
prime mover submission. In this example, a navigation to
the second page of an IWD is shown:

20

35

<xfitrigger id=“NavControl”>
<xf:label>Go to Page 2</xfilabel>
<xfisend ev:event="DOMActivate”
submission="NavIWD_Page2”/>
</xfitrigger>

45

The prime mover submission uses a local data instance to
store the navigation information that will drive the web page
navigation. It is necessary to save this information because
the prime mover submission needs to first launch the data
synchronization submissions, the last of which will execute
the page navigation submission, so memory for the page
navigation information is needed. Here is the markup for this
instance:

50

55

<xf:instance id="NavTo”>
<navigate xmlns=""">
<target>Page2.html</target>
<operation>page</operation>
</navigate>
</xf:instance>

65
The <xf:trigger> above initiates the prime mover submis-
sion identified as NavIWD_Page2. The XForms submission

12

process begins with an xforms-submit event, which occurs
before the data submission. In the prime mover markup
pattern below, the xforms-submit event handler provides the
navigation target and operation parameters that will be
needed after the data synchronization submission(s). These
parameters are then put to a special resource called IWD-
INF/next-resource provided by the REST interface. Once
the submission succeeds, the xforms-submit-done handler
initiates the data synchronization submissions.

<xfisubmission id=“NavIWD_Page2”
resource="IWD-INF/next-resource”
method="put” ref=“instance(‘NavTo')
replace="“none”
validate="false” relevant="false”>
<xfiaction ev:event="xforms-submit”>
<xfisetvalue
ref=“instance(‘NaVTo')/target”
>Page3.xhtml</xfisetvalue>
<xfisetvalue
ref=“instance(‘NavTo')/operation’
>page</xfisetvalue>
</xf:action>
<xfisend
evievent="xforms-submit-done”
submission="“Submit_datal” />
<xfimessage
ev:event="xforms-submit-error’>
Server down, please try again.
</xfimessage>
</xfisubmission™>

i

5

The xforms-submit-done handler was elided in the last of
the data synchronization submissions. The following con-
ditional handler invokes the page navigation submission, if
the navigation operation is was set to ‘page’ by the prime
mover:

<xfisend
evievent="xforms-submit-done”
submission="NavIWD”
if=“instance(‘NavTo')/operation=‘page"’
/>

The final page navigation submission performs a get
operation on the IWD-INF/next-resource that was set by the
prime mover submission. This submission replaces the cur-
rent page with the next resource. On a server, the <current>
element in content.xml is set to the next resource <target>
value. Here is the markup pattern for the final page naviga-
tion submission:

<xfisubmission id=*“NavIWD”
method="get” replace="all”
serialization="none”
resource="TWD-INF/next-resource”
/>

Document Completion Request: A similar submission
sequence is used to submit an IWD for server-side process-
ing, e.g., performing the business transaction represented by
the IWD or taking the next step of a workflow and provi-
sioning the IWD to another user.

Referring to FIG. 4, differences by putting the document
completion submission pattern in context with a page navi-
gation submission pattern is illustratively depicted. Page
navigation instructions include previous 232, next 234 and
done 236. There are only a few differences in the prime
mover submission for IWD document completion, relative

US 9,471,204 B2

13

to the prime mover for page navigation. First, the submis-
sion would be initiated by a distinct xf:trigger (labeled
>>DONE<< 236 in FIG. 4). Second, the navigation <target>
is a business process or server application module endpoint,
rather than an IWD web page resource. Third, the navigation
operation is set to ‘document’ rather than ‘page’. Fourth, the
prime mover submission does not need to submit any data to
the IWD, so data synchronization submission(s) 238 can be
initiated during the xforms-submit event rather than xforms-
submit-done. These changes result in the following markup
pattern for the document completion prime mover submis-
sion:

<xfisubmission id=“CompleteIWD"”>
<xfiaction ev:event="xforms-submit”>
<xfisetvalue
ref=“instance(‘NavTo')/target”
>http://the App</xfisetvalue>
<xfisetvalue
ref=“instance(‘NavTo')/operation”
>document</xf:setvalue>
<xfisend submission=“Submit_datal>/>
</xfiaction>
</xfisubmission™>

As FIG. 4 also shows, the last data synchronization
submission receives another xforms-submit-done handler so
that it is able to conditionally launch the document comple-
tion submission:

<xfisend
ev:event="xforms-submit-done”
submission="“SubmitIWD”

if=“instance(‘NavTo')/operation=‘document"’
/>

The document completion submission occurs at the end of
an interaction session with a particular client-side end-user.
Its purpose is to provide the IWD to the server-side business
process or application module, which then decides whether
to provide the IWD to another collaborator in a workflow or
to use the IWD content to drive back-end business transac-
tions. Here is the markup pattern:

<xfisubmission id="SubmitIWD”
method="“post” replace="all”
serialization="&iwdContentType;”

10

15

20

25

30

35

40

45

14

IWD content from the interaction session. The server appli-
cation module may request the entire repackaged IWD if
needed for archival purposes, but most business process
steps just pull the data needed to drive specific transactions
or provide the same interaction session to the next collabo-
rator in a sequential workflow. Thus, the approach of instan-
tiating a REST service for document interaction enables
significantly optimized responsiveness to the actual data
processing requirements of business processing pipelines
and collaborative workflows.

Platform-Independent Performant Implementation: The
IWD Server implementation is described as the set of server
resources available and a REST API that the server supports.
The notable resources maintained on an IWD Server can be
attributed to the following resource types:

1. IWDs—This is a singleton resource that is the collec-

tion of all active IWD instances of the server.

2. IWD—Within IWDs, each IWD instance is represented
by a GUID.

3. Entry—Within an IWD instance, there are a number of
entry resources corresponding in name to the ODF
entries for each IWD instance, for example, http://
server.com/IWDs/a-GUID/Page2 html.

4. ic—Within an IWD instance, there is one interaction
controller resource.

5. export—For each IWD instance, this resource provides
IWD instance as an archive, terminating its interaction
session.

The various higher level operations, such as page navi-
gation, document completion and signature generation and
validation, are supported by low level REST API operations
such as those described in Table 1. The two resource types
marked by an asterisk, viz. IWD* and Entry*, indicate that
those are not the literal URL fragments used in the REST
AP In the first case, an individual IWD resource is iden-
tified by its GUID instead. For an Entry resource within a
given IWD instance, the relative path from the base of the
ODF-package is used instead. IWD Servers may implement
access control rules on one or more of these resource types
and operations. By defining web application interaction in
terms of the ODF packaging format and a REST API, we
enable platform independent implementation. In one
embodiment, a IWD Server implementation can be built
using JAX-RS, which defines a Java API for RESTful Web
Services.

encoding=base64” TABLE 1

validate="false” relevant="false”>

<xforms:resource 50 The REST APIs for the Key Resource Types

value="instance(NavTo')/target”/>
</xf:submission> Resource Operations Semantics of the Operations
IWDs GET Returns list of IWD instances
This submission uses a custom serialization to which the POST Creates an instance of the posted IWD

IWD processing code is responsive, i.e., the IWD processor 55 IWD* GET Returns IWD instance (if application/vad.ibm.iwd
overrides the default XForms serialization via the xforms- ixaﬁcﬁfrgtlei) ;Crcgstte?;; IWD entries (if only
submit-serialize event. There are two conceptual models for DELETE Destroys the IWD instance
providing the completed IWD to the business process or Entry* GET Returns a specified resource within the IWD
server application module, a push model 242 and a pull instance :
model 240. Under the push model 242, the completed IWD 60 PUT Ersetzfcseor replaces a resource in the IWD
is repackaged into a full IWD serialization that is posted to DELETE Deletes a resource from the TWD instance
a server application module. However, this model is less ic POST Returns the next page in the IWD as decided by
efficient than the pull model 240, so the latter is used as the the IWD’s interaction controller .
default. Under the pull model 240, a main piece of infor- export GET iectﬁ?: ;got:frzi;’gs’m of the IWD instance
mation that is serialized and transmitted to the server appli- 65

cation module is just the interaction session ID for the IWD.
This allows the server application module to pull any needed

the IWD instance interaction session

US 9,471,204 B2

15

The present definition also supports a desired property of
application instance portability via export GET and IWDs
POST operations. These enable the entire web application
interaction session to be serialized, transported across enter-
prise IT domain boundaries, and then reinstantiated. For
example, a patient intake record can be instantiated at a
medical clinic, transported to a hospital, embellished with
diagnosis and treatment information, and then transported
again to an insurance claim center.

Consolidating the Interaction Workflow in the IWD:
Extending the IWD Interaction Model: The IWD file format
enables creation of server resource-friendly, high perfor-
mance large forms applications by virtue of packaging the
forms application as a composite made up of multiple
documents to furnish the pertinent views, data, logic and so
forth. A formalized IWD interaction controller can build
upon data views packaged within the document by intro-
ducing a dynamic, data driven management construct for
page navigation and other behaviors. The IWD run-time
processor supports a pluggable notion of such an interaction
controller (IC) to define and execute the IWD page transition
workflow with graceful fallback to static navigation schemes
in the absence of such an IC.

State Charts for Interaction Control: It is possible to
formalize the view state transitions using a state chart that
models the closure over all potential page transition
sequences that may occur during the IWD instance run-time
lifecycle, from document instantiation leading up to docu-
ment completion. The IWD run-time processor enables
plugging in a State Chart XML (SCXML) based definition
of an IC. A processor detects whether an IC has been
plugged in by introspecting the contents of the ODF con-
tent.xml, specifically the “ic” component in the IWD defi-
nition. Consider the following:

<off:document-content D
xmlins:off=“&odfns;”>
<off:office-body>
<iwd xmlns="“&iwdns;”>
<ic>controller.scxml<
fie>
</iwd>
</offioffice-body>
</off:document-content>

The above content.xml snippet conveys the following
information to the IWD run-time processor: Foremost, it
conveys the presence of an IC for managing the page
navigations within this IWD. Secondly, it conveys the
location of the IC, specified by the relative URL “control-
ler.scxml” with respect to the root of the REST-based URL
for the IWD instance. The presence of an IC causes the IWD
run-time processor to augment certain phases in the IWD
lifecycle with additional processing to support dynamic page
transitions. It also dedicates the relative URL “ic” to the
dynamic interaction controller resource for the IWD
instance, such that a GET request delegates dynamic page
navigation to the IC. Further, it necessitates minor changes
to the markup patterns for the prime mover and page
transition XForms submissions in individual web pages
within the IWD, as described below.

Once the run-time processor establishes the unique ses-
sion identity and completed the IWD instantiation by
exploding the template contents as necessary, it delegates the
act of determining a first page to be provisioned to the client
to the corresponding IC instance. The run-time processor
traverses the relative URL to locate the IC definition for the

10

15

25

30

35

40

45

50

55

60

65

16

IWD and creates an IWD instance specific SCXML proces-
sor based on that definition. This SCXML processor subse-
quently reads in any parts of the data model, i.e., specific
XML data instances that the state chart refers to. The
runtime processor triggers an instantiation event on the
SCXML processor, which causes the SCXML processor to
follow appropriate transition(s) based on their XML-data
dependent guards and come to rest in some initial state. This
initial state is queried by the IWD run-time processor to
determine the first page to provision to the client. The id of
the current state is also the relative URL to the correspond-
ing page to be provisioned to the client when in that
controller state, but other mapping techniques may also be
employed.

Just before the initial web page is delivered to the client,
the run-time processor saves the state of the instantiated
SCXML processor in the “ic” subdirectory of the exploded
IWD instance. Similarly, XML data changes, if any, are
saved to the proper locations in the “data” subdirectory. The
web pages delivered to the client obtain the XML data for
their XForms instances from package-relative URIs in the
src attributes, and they perform data synchronization via
XForms submissions. However, page navigation requests
are submitted to the package-relative “ic” URI which rep-
resents the dynamic interaction controller resource for the
IWD. Navigation is driven by logical targets, rather than
concrete URLs. The trigger which initiates the submission
sequence determines the name of the event to be fired on the
state chart controller.

Referring to FIG. 5, a schematic of such sequence of
submission operations for IC-based page navigation is illus-
tratively shown. First, a server-side IWD processor 302 is
informed of the name of the event to be fired, “next”. See
arrow 251. A second and third data synchronization submis-
sion (252 and 253) puts the data collected by Pagel.html
into a server-side IWD instance(s) 304 using a chaining
pattern described above. A fourth submission (254) requests
the dynamic interaction controller resource for the IWD
which is determined by an active state (254') in a state chart
258 based controller implementation, and a fifth submission
(255) shows Page2.html consuming one of the results of the
earlier data synchronization. This pattern results in certain
changes to the previously described markup patterns. The
instance that stores the navigation information takes the
form:

<xfinstance id=“NavTo”>
<navigate xmlns="">
<target></target>
</navigate>
</xfiinstance>

Since page navigation is delegated to the IC resource, the
prime mover XForms submission specifies the logical target,
i.e., the name of the event to be fired on the state chart 258,
rather than a concrete package-relative URL for the subse-
quent page:

<xfisubmission id=“ICNavigate_Next”

resource="IWD—INF/neXt—resgurce”

method="put” ref="instance(NavTo')”

replace="“none” validate="false”

relevant="false”>

<xfisetvalue ev:event?“xforms-submit”

ref="instance(NavTo')/target”
>next</xfisetvalue>

US 9,471,204 B2

17

-continued

<xfisend ev:event="xforms-submit-done”
submission="“Submit_datal”/>
<xfimessage
evievent="xforms-submit-error”>
There was a problem contacting the server.
Try again.
</xfimessage>
</xfisubmission™>

Any intermediate data synchronization XForms submis-
sions continue to use the same patterns. The trigger for the
prime mover XForms submissions in the user interface
reflects the dynamic nature to the user with appropriate
labels:

<xfitrigger>
<xfilabel>Next Page</xf:label>
<xfisend ev:event="DOMActivate”
submission="ICNavigate Next”/>
</xfitrigger>

The page navigation submission targets the package-
relative “ic” URI for the dynamic IC resource:

<xfisubmission id=*NavIWD” method="get”
serialization="none” resource="ic”
replace="all” />

Once the page navigation submission makes a GET
request to the server at the package-relative “ic” URL, the
IWD run-time processor restores the SCXML processor
from the state previously saved in the IWD instance’s “ic”
subdirectory, which then reads in any XML data instances
the state chart refers to. These XML data instances have
already been updated by the chained data synchronization
XForms submissions as necessary. The run-time processor
then reads the name of the event to be fired on the SCXML
processor (by retrieving the “NavTo” instance data stored at
the location “WEB-INF/next-resource™) and fires the state
transition bearing the corresponding name in its event attri-
bute. The SCXML processor follows appropriate transitions
based on their XML -data dependent guards and comes to
rest in some state. The target attribute of a transition indi-
cates the id of a quiescent state. The IWD processor deter-
mines the next page to provide from this state. Again, in one
mapping, the new resource to return is based on the id of the
new state. The SCXML processor state and any data changes
are saved to the IWD instance, and then the new page is
provided to the client.

Referring to FIG. 6, a submission sequence to submit an
IWD for server-side processing on document completion is
shown and is similar to that described above in FIG. 4. A
notable difference is that page navigation uses logical navi-
gation targets such as “previous” 260 and “next.” 262. The
relevant markup described also appears in the above
examples. Notably, those examples about service invoca-
tions and document completion. Compared to the basic IWD
lifecycle previously described, the IC-based IWD comple-
tion request here may not require a distinct submission to a
server application module or business process module due to
the ability to implement simple workflows via SCXML
service invocations.

Service Invocations: A state chart IC that manages a series
of wizard style interactions across views within an IWD is

10

15

20

25

30

35

40

45

50

55

60

65

18

also capable of declaratively describing synchronous as well
as asynchronous service invocations as part of the activities
performed while entering and exiting controller states, or on
particular state transitions. The services orchestrated into the
workflow vary widely depending on the application. Com-
mon tasks include sending notifiers and updating logs. As a
simple example, consider an expense report application
where the submission of a report delivers a confirmation
email to the person filing the report. The following SCXML
markup illustrates the invocation of the email service as part
of the view transition from the completed document sub-
mission page “submit.xhtml” to the page “completed.xhtml”
that informs the user that they have completed the business
process and that a confirmation email will be sent:

<scxml:state id="submit.xhtm]”>
<scxml:transition event="submit”
target="completed.xhtm!|”>
<service:email
to=“instance(‘expense')/empl/email”
subject="concat(Expense Report#,
instance(expense')/id)”>
Thank you for submitting an expense
report for the amount of:
instance(‘expense')/total
The approver is:
instance(‘expense')/approver
<fservice:email>
</scxml:transition>
</scxml:state>

IC

Collaboration across Actors: The RESTful API for IWD
interaction ensures that interactions with IWD instances are
not constrained to a particular user agent or actor. The state
chart IC can be used to coordinate the set of collaborative
tasks required for IWD document completion. The follow-
ing SCXML markup illustrates a collaboration scenario
wherein the submission of an expense report notifies a new
actor, the approver, of a task requiring attention:

<scxml:state id="submit.xhtm]”>
<scxml:transition event="submit”
target="completed.xhtm!|”>
<service:email
to="instance(expense')/empl/email”
subject="concat(Expense Submitted#,
instance(expense')/id)” />
<service:email
to="instance(expense')/approver/email”
subject="concat(Expense For Approval#,
instance(expense')/id)” />
</scxml:transition>
</scxml:state>

IC

Using XForms Data in Interaction Controllers:

We consider an active XForms data model within a
running server-side IWD session as an extension to a simple
storage-only data model. By treating data synchronization
submissions as updates to a server-side running model,
within-package XForms bind expressions can be triggered,
which offer an opportunity for additional layers of valida-
tion, constraints, and spreadsheet-like calculations across
the IWD as side-effects of data synchronization. An execut-
ing IWD can then use these results to invoke web services,
intelligently reflect errors back to the user, or modify page
navigation, as appropriate.

Conventional systems require program code to link web
page invocation and other actions. In accordance with the
present principles, a dependency graph may be set up to

US 9,471,204 B2

19

provide the needed triggering of webpages, logical chaining
and other actions. For example, if three data fields need to
be filed out and a user does so, a bind construct or other
construct automatically triggers a new action such as open-
ing a new web page or the like. In this way, a user is
navigated through a website based on their own actions. The
programmer need only create a dependency graph and not
program each and every sequence to link pages and cause a
user to be guided through a web page. This provides an
enormous amount of flexibility for both the programmer and
the user.

Advantageously, a data-driven web application control is
provided. Page navigation is selected by presence/absence
of data values or conditions over those values, and not
pre-determined by programming code. Changes to data
values may trigger a return to earlier pages in flexible or
unanticipated patterns without explicit coding by a page
author. Execution may then resume where the user left off
without reprompting for intermediate steps. In one embodi-
ment, data may be provided by other means, e.g., without
asking the user and may cause intelligent skipping of steps
when the system determines it already has that informa-
tion—Tleading to flexibility in user interaction. For example,
the system may include a user’s date of birth from an
unrelated profile stored in the system or other means. This
information is employed to fill in a data field automatically
without user intervention. The provided data along with any
other information needed is still employed to trigger a page
change in accordance with the dependency graph conditions.

Application navigation can be extended or customized by
authors/programmers by adding additional “bind” state-
ments without the need for pre-defined extension points as
in conventional programming code. E.g., an author can
create dependencies between the presence of data in certain
data fields so that navigation can be customized as desired.
Navigation behavior results from a sum total of all the binds
present whether provided by the original or extended appli-
cation (customized).

Application authors can work at the level of their “busi-
ness logic” and not at the lower level implementation details
of application control. This raises the level of abstraction of
web control so that business analysts and other non-devel-
opers can do more work without the help from programmers.
Navigation control is independent of specific middleware
(e.g., Java EE) so can be moved flexibly to other platforms
such as Microsoft .NET or Google App Engine, or to run on
a client in a browser. This provides a significant advantage
as applications are authored in a cloud and may be deployed
to run on a variety of platforms.

In the same way, the application can be more easily
moved from one device to another which may not have the
same “page” structure since application flow is determined
strictly by the set of data values and bind expressions in
effect. We can save an application on one device and reload
it on another which has slightly (or significantly) different
bind expressions and get varying behavior in a way not
achievable in current programming models or middleware.

In the markup example below, the XForms data instance
in loan.xml is assumed to include elements for the name and
income of the primary borrower of a hypothetical loan as
well as elements for optional information for the borrower’s
spouse. The desired business logic is to customize the
application’s navigational path to prompt for spousal infor-
mation when the income of the primary borrower is below
some threshold value, such as $80,000, as indicated in the
bind expression associated with the model.

20

25

40

45

50

55

20

<xfimodel id="test”>
<xfiinstance id="loan” src="loan.xml”/>
<xf:bind nodeset=“ins‘tance(‘loan')/Spouse”
relevant="instance(loan')/Borrower/Income
< 800007
</xf:bind>
</xfimodel>

IC

The XForms bind expressions are declarative expressions
written in XPath which allow authors to compute “model
item properties” (MIPs) that provide calculated values,
define validation constraints, and indicate when specific data
in a model is needed, read only or relevant given the state of
instance data anywhere in the model.

Such bind expressions are used on the client in XForms
documents that interact directly with the user-controlling the
visibility of user interface controls on the screen, indicating
error states, and ensuring all required fields are filled before
form submission. Model item property bind expressions are
explored where data required to make the decision is not
provided to the client-side web page. For example, it may be
necessary for efficiency to avoid providing all data instances
of a large model to the individual web pages of an IWD, or
it may be that the decision needs to be based on the result of
a web service if, for example, the decision logic or its
intermediate data should not be placed in the IWD for
privacy, security, or trade secret reasons. Instead, only the
results of the web service would be placed in the IWD,
where relevance expressions, as in the markup example
above, or other bind expressions can then be brought to bear
in the interaction session.

XForms Data in State-Chart Controllers: In one embodi-
ment of our IWD implementation, we exposed model
instance data as well as model item properties (such as
calculate, constraint, required, read-only and relevant) to the
IWD’s interaction controller. As shown in the example
markup below, the various MIPs were referenced using
XPath functions in the SCXML transition conditions. In this
example, the application begins with loanl.html, indicated
by the initial attribute of the controller’s root scxml element.
Upon submission of the form data from the client, all data
instances in the server-side model that have matching
instances in submitted data are updated with content from
the client. The transition condition will result in navigation
to cosigner.html if the spouse data elements are flagged as
relevant by the bind expression or to loan2.html otherwise.

<scxml initial="loanl.html”>
<state id="loanl.htm!”>
<transition event="next”
cond=“iwd:Relevant(‘loan',‘Spouse')”
target="cosigner.html!”/>
<transition event="next”
target="loan2.html!”/>
</state>

IC

</scxml>

We have experimented with providing XPath functions
that allow SCXML controllers to reference live XForms
model data and relevance MIPs as shown in the example.
Providing access to required and validity MIPs would be
similarly straightforward. Similarly, providing XPath func-
tions for setting data values would be a valuable next step.
We provide implementations of many XForms actions, e.g.
setvalue, delete, insert, and especially send (for calling web

US 9,471,204 B2

21

services), as custom actions to be used in SCXML anent ry,
onexit, and transition elements.

XForms as an Interaction Controller: A function of inter-
action controllers is to compute the next page to be displayed
in an IWD and expose that value through the IWD-INF/
next-resource entry of their REST interface. A wide variety
of interaction controller implementations is possible for
determining the next interaction step as a function of the
current state of the IWD. The markup example below and its
following description will be used to explore the possibility
that the data-driven bind mechanism of XForms models is
sufficient to drive IWD navigation in a purely declarative
programming manner. The declarative nature of such a web
controller would provide a significant simplification over
current practice based on imperative languages such as Java
or PHP, or even on higher level abstractions such as the
SCXML state machines described above for a set of appli-
cations.

The declarative nature of this controller specification
means that web authors can focus on the abstract conditions
under which a particular page should be presented to the user
and not on the procedural means for how to control the
selection of the next page in navigation.

Markup Example:

<xfimodel id="test”> IC
<xf:instance id="IC">
<IC xmlns="">
<nextIWDEntry/>
<pagetable>
<pagel>
<ready>true</ready>
<name>loanl.html</name>
</pagel>
<page2>
<ready>false</ready>
<name>loan2.html</name>
</page2>
</pagetable>
</IC>
</xf:instance>
<xf:bind nodeset=“insta.nce(‘IC')”>
<!--- guard conditions for each page --->
<xf:bind nodeset="pagetable/pagel/ready”
calculate="if(
ins‘tal‘lce(‘lo?.n')/Borrower/Name
= ', twe', false')/>
<xf:bind nodeset="pagetable/page2/ready”
calculate=“if(instance(‘lo‘an')/Pr‘incipal
=0, true', false')”/>
<!--- pick the first ready page --->
<xf:bind nodeset="nextIWDEntry”
calculate="../pagetable/* [ready=‘tme']
/name”/>
</xf:bind>
</xf:model>

The markup example above shows the ‘test’ XForms loan
data model extended with an additional “IC” instance to
store the ready-state of each page in an IWD. Each page has
a ready element set to “true” or “false” indicating whether
the corresponding page with the given name should be in the
set of pages from which the next page will be selected.

A set of bind expressions determines the readiness of each
page according to application specific business logic. In
particular, the readiness of the loan2.html page is computed
by a bind expression that tests the presence of a specific loan
amount. Whenever the principal data element value is “07,
the loan2.html page is ready to run and its ready flag in the
pagetable/page2 entry is set to true. Otherwise, when the

10

15

20

25

30

35

40

45

50

55

60

65

22

loan amount has been provided—by whatever means in
whatever order with respect to other pages—loan2.html will
not be presented to the user.

Unlike the prior art in web navigation techniques, these
readiness constraints need not be coordinated by a central
application-specific navigation controller implemented by
web authors. Rather, the separate and individual constraints
determine the readiness of an associated page as distributed
units of logic. The constraints thus form a much more
de-centralized and extensible approach to web navigation
specification than current technologies.

The extensibility of web navigation constraints means that
new expressions may be inserted into the set of navigation
constraints without concern as to their order in the overall
program specification, e.g., without concern for their
sequence in the markup example above. The execution order
of navigation constraints is determined by the set of expres-
sions which need to be re-evaluated given their dependence
on input values which have been updated in the current cycle
of execution—by data model changes either from the user or
related system components. These data changes imply a set
of navigation constraints which are now potentially invalid
and need to be recomputed. Only those constraints will be
selected for re-evaluation among all those present in the
application.

The order of execution among the constraints which have
been marked for re-evaluation is determined by examining
which among them have all inputs determined and which
require intermediate values which may be provided by other
constraints to themselves become available for execution.
All of this navigation constraint execution management is
provided automatically by the underlying navigation frame-
work and is, unlike conventional technologies, not required
to be implemented by the application author.

The set of navigation constraints may also be extended by
developers other than the original application author. Given
the flexibility of the above execution management structure,
other developers wanting to add navigation constraints can
think solely in terms of the incremental logic they need and
again unlike current technologies avoid the complexity of
the additional logic of integrating their new constraints into
the overall operation of the system. Their navigation con-
straints are simply added to the overall set in play in a
particular application and execute in a manner consistent
with those constraints they are extending.

The declarative nature of the navigation constraints,
together with the considerable ease of extending constraints
without need for additionally specifying their interaction
with prior constraints, enables non-programmer designers to
be able to manage the creation and extension of web
navigation in a manner that previously required higher
skilled developers working with conventional procedural
languages such as Java, Javascript, or C to accomplish.

Very often, more than one page in an application will be
marked as ready to run given the evaluation of the set of
navigation constraints in any given cycle of execution.
Rather than fixing a specific or “hard coded” strategy for
picking the best page to present to the user from among this
set of available ready pages, an additional level of naviga-
tion constraints is used to make this determination and to
break these “ties”. Using the same formalism, i.e., the same
declarative language for navigation constraints and the same
automated execution process for tie-breaking as for page
evaluation, means we have a uniform and also easily exten-
sible technology for resolving conflicts among multiple
possible pages as well as for determining the readiness of the
pages themselves. This uniforming and extensibility means

US 9,471,204 B2

23

that all aspects of navigation control can be authored and
extended by non-programmers and presented in design tool
environments in a consistent manner.

In the example markup above, a second “bind” expression
determines which of the ‘ready’ pages should be selected as
the next step in running the IWD application. In the markup
example, the bind simply selects the first page having a
ready flag of true and sets the corresponding page name as
the current value of the nextiWDEntry element, which the
REST implementation maps to IWD-INF/next-resource
method calls.

The binds in this example are designed to give the idea of
declarative interaction control, and a more realistic IWD
web application would use more involved ‘ready’ state rules,
e.g., to allow the user to go back to the web pages for
previous steps. For example, if the user had already pro-
gressed beyond the second page, loan2.html, and had pro-
vided a loan amount, then loan2.html would normally be
marked as not ready for execution and would not be pre-
sented to the user. If some further consideration caused the
principal field in the data model to be reset to zero—for
whatever reason—then the effect on the web navigation as
seen by the user would be to re-cycle back to the loan2.html
page and reprompt for this information without need for the
application author to separately consider and implement this
“exception” type of navigation control. Having exception
navigation results from the side-effect of changes to the data
presents an extremely flexible programming model and
removes considerable complexity from the navigation path
design problem as it allows the author to focus on the main
paths of navigation allowing exceptions to cause momentary
jumps back to correct earlier steps.

Note that the resulting return to the main path of naviga-
tion will also occur automatically. Once the user has seen
loan2.html again, and re-entered the loan principal, those
pages between loan2 . html and where the exception occurred
will likely be still marked as not ready for execution since
their work has been accomplished, and the user will return
automatically to the point of interruption. If there are addi-
tional intermediate results that have been invalidated by the
reprompting for the loan principal, then those pages and only
those pages will be presented again for the user to perform
only the minimal rework required by the exception.

Note that the strategy of opportunistically presenting that
page which reflects the next unit of work needed given the
state of data actually present in the system also allows for the
navigation path to “skip ahead”. If some data elements can
be derived automatically by system components rather than
being provided by directly by the end-user, then those pages
responsible for prompting the user and providing those
values will already be marked as not ready for execution—
since their work as been accomplished by other means than
involving the end user. The actual navigation seen by the
user therefore will be optimized for the data actually needed
to complete the problem and can vary substantially depend-
ing on the data available or derived by the system at the time
of interaction.

An additional technical aspect of this design includes the
way for invoking web services defined in the controlling the
XForms model. Web service definitions themselves can be
placed within the XForms model in XForms submission
elements, which can specify the resource URI, the submis-
sion method, the data to send and its format, and how to
process the result. To invoke the service, events occur
corresponding to IWD data synchronization, and since this
operation updates the data instances xforms-insert and
xforms-delete events are appropriate. The XForms send

20

30

40

45

24

action, which initiates an XForms submission, can be set to
hook these events, and the ‘if” attribute can be used for
conditional invocation.

Note that a dependency graph of XForms bind expres-
sions is not equivalent to a more general business-rule-based
approach such as in a full production system or constraint
solver. There are prior uses of rule and constraint systems for
business process management in which each step in appli-
cation flow is derived from the execution of a set of rules or
solution of a set of constraints. The present embodiments
provide a large and interesting set of applications where a
more restricted data dependency graph-akin to a spreadsheet
model rather than a full rule set—is sufficient. Particularly
for presentation-oriented flow control, such an approach
could be significantly simpler in syntax and processing
model than a more complete business-rule- or constraint-
based approach.

A platform-independent format for composite web docu-
ments based on ODF archives has been presented. A com-
posite Interactive Web Document aggregates all artifacts
pertaining to document data or content, views needed to
interact with or print the document, and declarative control-
lers for runtime behavior. IWDs extend conventional web
archive formats such as the JEE WAR format by providing
a REST-based protocol for interaction. The protocol maps
relative URIs onto these package contents and supports a
full set of CRUD operations. IWDs also extend common
web archives by supporting REST services for interactive
behaviors, including access to platform-independent speci-
fications of behavior based declarative languages such as
State Chart XML. In addition to REST services for digital
signature operations, markup patterns are shown for both
client-driven and server-controlled page navigation during
document interaction.

Additional patterns for storing and managing content
within an IWD can be employed on advanced digital sig-
nature use cases for collaborative business processes, on
issues of access control and concurrency, and on extending
the within-IWD workflow described here to encompass
workflow across a composition of multiple IWDs interacting
in more complex business processes. Relating to patterns for
data storage and management, we can leverage the existing
structure of ODF content.xml files within archives not only
to store IWD metadata (for example, the currently executing
page) but also to store the aggregated data or content of the
IWD instance during execution. This simplifies the submis-
sion patterns for page navigation by collecting multiple
XForms instances into a single XML structure within the
<odf:office-body> element. In most cases, a single XForms
submission could then be used both to synchronize data and
effect a page transition.

Relating to issues of IWD access, an access control
technology, such as, XACML, may be integrated and
address issues of concurrent access by multiple actors. We
recognize that realistic workflows will often be more com-
plex than are appropriate to encapsulate in a single IWD.
New levels of control extending the within-IWD notation
presented may be employed. IWDs maybe composed of
IWDs, i.e. hierarchical archives with IWD members in
addition to leaf level artifacts. As a higher order IWD, the
control mechanisms presented here should remain valid. On
the other hand, we want the behavior of nested IWDs to
adapt appropriately to their shared context by conforming to
common styles, sharing data, and adjusting navigation
appropriately to find the balance between encapsulation and
visibility across IWD compositions.

US 9,471,204 B2

25

Referring to FIG. 7, a system/method for web application
navigation control is illustratively shown in accordance with
one embodiment. In block 502, data entry fields and con-
figurations in a page are related to a constraint or constraints
that provide navigation control when a condition is met. The
conditions may be dependent on the type of data entered, the
configuration of data entered (e.g., different data fields that
may be populated by a user), conditions under which data
was entered, etc. The constraints may include non-proce-
dural computed dependency constraints that may include
bind constraints or other constraints that provide navigation
control when a condition is met.

In block 504, presence of user-side information is checked
to determine if the condition is met is and the indicated
navigation control is to be invoked. This may also include
determining whether data has been deleted so that the
process can be reversed and the user may be prompted (e.g.,
navigated) back to an earlier form based upon the deletion
in block 506. The user-side information may include detect-
ing a presence of data provided by one of a user and memory
storage independent of the user, in block 508. In block 509,
steps may be skipped when a system determines the infor-
mation is already known.

In block 510, if the condition is met, the trigger event is
evoked to navigate to a new page based on at least one of a
set of entry fields where data was entered and a type of data
content entered in the entry fields without guidance from
procedural navigation code. The procedural code would be
code scripted by programmers in a navigation scheme. In
other words, the data configuration or data type is employed
to determine where to go next. This is in contrast to
conventional system where programming code is provided
to script a next move. Instead, the users actions and the
availability of information are employed to navigate through
pages, documents etc. In block 512, the trigger starts a
process which controls navigation in accordance with a
presence or absence of data values or conditions over those
values. This may include controlling a sequence of web page
steps during a user session.

In block 514, a return to earlier pages based upon changes
to data values may be provided without need for explicit
error or exception handling logic to be provided by the
application author. In one embodiment, a return to an earlier
page may be triggered in a flexible or unanticipated pattern
based upon changes to data values. In block 516, execution
of the earlier page may be resumed without reprompting for
intermediate steps (but with reprompting for data values
made invalid by new user inputs).

The present embodiments provide flexibility in navigation
and also provide customizability by non-programmer users
in block 519. In block 520, bind statements may be added
without extension points to customize navigation behavior.
This provides additional conditions or customizability by
programmer or non-programmers alike. In block 522, a level
of abstraction of application control can be provided such
that non-developers are able to customize navigation behav-
ior, e.g., using non-procedural dependency expressions (e.g.,
bind constructs or the like). This may include a control
interface for configuring a new bind statement or other
functionality to the application. In block 524, using the
control interface or otherwise, navigation control can be
authored which is independent of specific middleware to
permit flexibly moving an application between platforms.
Dependency graphs and bind constructs in accordance with
the present principles are independent of the middleware
platform used. In block 526, an application control applica-
tion can be moved from one device to another independently

10

15

20

25

30

35

40

45

50

55

60

65

26

of a page structure since application flow is determined by
a set of data values and bind expressions in effect.

Referring to FIG. 8, another system/method for web
application navigation control is illustratively depicted. In
block 540, navigation data models used in navigation con-
straints with received data from an end-user or system are
updated. The received data from an end-user or system may
include a presence of data provided by one of a user and
memory storage independent of the user. In block 542,
without needing a centralized application-specific controller,
extensible navigation rules which depend on changed data
values and need re-evaluation are automatically selected
from a collection of extensible navigation rules associated
with each page of a plurality of pages. In block 546, the
navigation constraints associated only with the pages poten-
tially changing their ready state to execute from among the
plurality of pages in an entire application are evaluated to
determine which pages are ready to run based on updated
data from the navigation data models. In block 548, a
preferred page to be actually navigated to next from among
a set of all available and ready pages by execution of a set
of second and separate navigation constraints is selected
using results of the navigation constraints of the evaluating
step.

In block 550, tie-breaking between pages is performed
based on the navigation constraints to select a next qualified
page from the set of all available and ready pages. This may
be based on the amount of data the most current data or any
other criteria. The tie-breaking criteria may be customized
by a non-developer end-user. In block 552, selecting the
pages is performed by controlling navigation in accordance
with a presence or absence of data values or conditions over
those values. This includes controlling a web page naviga-
tion sequence or the like.

In block 560, a return to earlier pages may be triggered
based upon changes to data values without need for explicit
error or exception handling logic provided by an application
author. In block 562, execution of the earlier page may be
resumed without reprompting for intermediate steps but with
reprompting for data values made invalid by new user
inputs. In block 564, data dependency constraints including
bind statements may be added without need for pre-deter-
mined extension points to customize navigation behavior.

Referring to FIG. 9, a systenv/architecture 600 for web
application navigation control is illustratively shown. A
server or other computer device 602 may be located at or
near a user or users or remotely from a user or users. The
server 602 preferably communicates with a user(s) over a
network 604. The network may include a wired or wireless
network and may include a cellular network, cable network,
satellite network, a telephone network etc. The server 602
includes memory 603 and at least one processor 614. An
application 605 is provided, in accordance with the present
principles, that permits user actions in the form of data entry
type and position to automatically control navigation. The
application 605 is preferably independent of an application
platform and can be used with any middle-ware, for
example, or with any device.

A dependency graph 606 may be provided at the server or
distributed over the network 604. The dependency graph 606
relates data fields and data types with triggers and navigation
controls. Web pages, forms or the like are rendered on a
user’s computer or other rendering device 610. Data entry
fields in a page are related to navigation instructions that
provide navigation control when a condition is met. For
example, if three particular fields have data entered by the
users, a new page is opened. In another example, if a field

US 9,471,204 B2

27

has a yes answer a first page is opened, and a no answer
would open a different second page. Other conditions are
also contemplated.

An interaction module 612 is configured to be sensitive to
one of user-side information entry and known information to
determine if the navigation instruction is to be invoked. The
interaction module 612 uses bind instructions and the depen-
dency graph 606 to make these determinations. The user
enters data or data is entered for a user in a form 615.
Depending on the fields populated, the data type, etc.,
determines how navigation is carried out.

A processor 614 is configured to execute the navigation
instruction in accordance with a presence or absence of data
values or conditions over those values to navigate to a new
page based on a set of entry fields that data has been entered
in and/or a type of data content entered in the entry fields
without guidance from programmed navigation code. The
navigation instruction controls a sequence of steps between
web pages.

Having described preferred embodiments of a system and
method for data-driven web page navigation control (which
are intended to be illustrative and not limiting), it is noted
that modifications and variations can be made by persons
skilled in the art in light of the above teachings. It is
therefore to be understood that changes may be made in the
particular embodiments disclosed which are within the
scope of the invention as outlined by the appended claims.
Having thus described aspects of the invention, with the
details and particularity required by the patent laws, what is
claimed and desired protected by Letters Patent is set forth
in the appended claims.

What is claimed is:

1. A method for web application navigation control,
comprising:

updating navigation data models used in navigation con-

straints with received data from an end-user or system,
the data models being stored on a computer storage
medium;
without needing a centralized application-specific con-
troller, automatically selecting from a collection of
extensible navigation rules associated with each page
of a plurality of pages the extensible navigation rules;

evaluating the navigation constraints associated only with
the pages potentially changing their ready state to
execute from among the plurality of pages in an entire
application to determine which pages are ready to run,
wherein determining which pages are ready to run is
based on updated data from the navigation data models;
and

selecting a preferred page to be actually navigated to next

from among a set of all available and ready pages.

2. The method as recited in claim 1, wherein selecting
includes tie-breaking between pages based on the navigation
constraints to select a next qualified page from the set of all
available and ready pages.

3. The method as recited in claim 2, wherein tie-breaking
is customized by a non-developer end-user.

4. The method as recited in claim 1, wherein selecting
includes controlling navigation in accordance with a pres-
ence or absence of data values or conditions over those
values.

5. The method as recited in claim 4, wherein controlling
navigation includes controlling a web page navigation
sequence.

6. The method as recited in claim 1, further comprising
triggering a return to earlier pages based upon changes to

10

15

20

25

30

35

40

45

50

55

60

65

28

data values without need for explicit error or exception
handling logic provided by an application author.

7. The method as recited in claim 6, further comprising
resuming execution of the earlier page without reprompting
for intermediate steps but with reprompting for data values
made invalid by new user inputs.

8. The method as recited in claim 1, wherein with received
data from an end-user or system includes a presence of data
provided by one of a user and memory storage independent
of the user.

9. The method as recited in claim 1, further comprising
adding data dependency constraints including bind state-
ments without need for pre-determined extension points to
customize navigation behavior.

10. The method as recited in claim 1, wherein the selected
extensible navigation rules depend on changed data values
and need re-evaluation.

11. The method as recited in claim 1, wherein the pre-
ferred page to be actually navigated to is selected by
execution of a set of second and separate navigation con-
straints using results of the navigation constraints of the
evaluating step.

12. A method for web application navigation control,
comprising:

relating data entry fields in a page stored in computer

readable storage memory with non-procedural com-
puted dependency constraints that provide navigation
control when a condition is met;

checking a presence of user-side information to determine

if the condition is met and the indicated navigation
control is to be invoked; and

if the condition is met, evoking a trigger event to navigate

to a new page based on at least one of a set of entry
fields where data was entered in and a type of data
content entered in the entry fields.

13. The method as recited in claim 12, further comprising
evoking the trigger event without guidance from procedural
navigation code.

14. A method for web application navigation control,
comprising:

updating navigation data models used in navigation con-

straints with received data from an end-user or system,
the data models being stored on a computer storage
medium,;
without needing a centralized application-specific con-
troller, automatically selecting from a collection of
extensible navigation rules associated with each page
of a plurality of pages the extensible navigation rules,
wherein selected extensible navigation rules depend on
changed data values and need re-evaluation;

evaluating the navigation constraints associated only with
the pages potentially changing their ready state to
execute from among the plurality of pages in an entire
application to determine which pages are ready to run;
and

selecting a preferred page to be actually navigated to next

from among a set of all available and ready pages.

15. The method as recited in claim 14, wherein selecting
includes tie-breaking between pages based on the navigation
constraints to select a next qualified page from the set of all
available and ready pages.

16. The method as recited in claim 15, wherein tie-
breaking is customized by a non-developer end-user.

17. The method as recited in claim 14, wherein selecting
includes controlling navigation in accordance with a pres-
ence or absence of data values or conditions over those
values.

US 9,471,204 B2
29

18. The method as recited in claim 17, wherein controlling
navigation includes controlling a web page navigation
sequence.

30

